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Acoustic gas cavitation is characterized by the appearance of sheets of visually observ- 
able bubbles in a fluid [i]. Large bubbles of visible dimensions (R 0 ~ 10-4-10 -3 m) grow 
from microbubbles, cavitation seeds, under the effect of a "rectified" diffusion mechanism 
[2, 3]. As the bubble grows, the concentration of the gas dissolved in the fluid is reduced 
in an increasingly extended domain. The regime setting in during overlapping of the domains 
"laid waste" by the adjacent bubbles, does not correspond to the model of independent nuclei 
[2, 3] and requires further study. The influence of the varying gas content on the dynamics 
of growth (and dissolution) of cavitation bubbles is discussed in this paper. Conditions are 
mentioned for the occurrence of an asymptotically universal bubble size distribution. 

The change in concentration of a gas dissolved in a fluid is described by the diffusion 
equation 

ac 
o"'{ + ( v . V )  c = DAc, ( i ) 

where D is the diffusion coefficient and v is the velocity of fluid motion. 

Let us examine the characteristic time scales existing in the problem: the period of 
the sound field TI, the smallest scale by assumption, T~ = n-ZlSD -I is the mean time of gas 
molecule diffusion motion between bubbles (n is the bubble concentration), T s is the charac- 
teristic time of the change in gas content (an explicit expression for this scale will be 
given below (6) in the solution of the problem). The following scale hierarchy is typical: 
T l << T 2 << T s. The physical meaning of the condition T l << T 2 is smallness of the diffusion 
wavelength VDT I as compared with the mean spacing between bubbles n -IIs The inequality 
T 2 << T s implies that the deviation of the gas content from the mean value is small and, there- 
fore, the diffusion fluxes in the space between bubbles are small. The smallness of the bub- 
ble size as compared with the distance between them (R 0 << n -11s) is also assumed. 

After taking the average over the period of the sound field (i) reduces to 

<(v.V)e> = DA<c>,, 

within the limits of the oscillating diffusion layer near the bubble, where <...> denotes tak- 
ing the average over the period of the field. We limit ourselves to the consideration of 
fluids of large viscosity, which permits microfluxes and translational bubble motion not to 
be taken into account. A quasistationary concentration distribution 

isestablished in the times t >> T 2 in the space between the bubbles (outside the oscillating 
diffusion layers), where r i is the coordinate of the center of the i-th bubble. The long- 
range nature I/Ir -- ril of the influence of the individual bubbles on the dissolved gas con- 
centration permits the introduction of a mean (self-consistent) field on concentration <c> = 

E(t/T3). 

In the neighborhood (~D~l < I r -- riI < n-lls) of the i-th bubble <c> = ~(t/T s) + ci/Ir -- ril 
The equation describing the growth of a single bubble here conserves its form [3] and only the 
value considered constant earlier for s gas content at a large distance from the bubble c~ 
is replaced by a variable mean value ~(t/Ts): 

dR~....j~ Deo l <_~/Bo> (~ (t/T3) <(B/~o)4-3~ po> ] (2) 
dt = og Ro (~ + 4o/3p~ao) % " -  <(taRo)4> p ~  ' 
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where P0 = P~ + 2~ P~ is the equilibrium value of the pressure far from the bubble, R 0 is 
the equilibrium radius of the bubble, o is the surface tension coefficient, c o is the equilib- 
rium value of the gas content (the mass density), pg is the gas equilibrium density for fixed 
values of p~ and the temperature. The running value of the bubble radius R is found from the 
solution of the Rayleigh-Plesset equation 

R R  + 3 h~ + p:~ {Po [ t - -  (Ro/R) ~ ]  - -  p ~  cos ~t  + poRo~obk } = O. 

Calculations are performed to the accuracy of second order terms (inclusive) in the sound wave 
amplitude, P0 is the fluid density, ~ is the polytropic index, w02 = i/p0R02(3~p0 - 2o/E 0) is 
the natural frequency of the monopolar bubble vibrations, b is the damping constant that ef- 
fectively takes account of the dissipative processes of viscosity, heat conduction, and radi- 
ation losses, and Pm, ~ are the sound wave amplitude and frequency. 

The time change of ~ is determined from the mass conservation law for the dissolved gas 

d ( 4~ a 
d'-/- + "~" 92 j dRo "-5-- Rog (Ro' t) = 0. ( 3 ) 

The bubble size distribution function f(R 0, r) satisfies the continuity equation in the dimen- 
sion space 

o = R o -  (4) o--r + = o, 

The awkward form of (2) makes a general analysis of the system (2)-(4) difficult; conse- 
quently, we limit ourselves below to a discussion of a particular case that allows an exact 
analytic solution. If the surface tension forces are small compared with the hydrostatic 
pressure and the sound field has not too high-frequency, so that the bubbles are preresonant 
in the whole stage under consideration, (2) acquires the simplified form 

In the approximation taken, the influence of the "rectified" diffusion process is equivalent 
to an increase in the mean concentration of the dissolved gas. The system (3)-(5) here differs 
from the Lifshits-Slezov coalescence equations [4, 5] just by notation, and substantially de- 
scribes the process of a new phase falling out of the supersaturate solution. The existence 
of a critical radius, determined from the condition R0 = 0 (see (5), R, = 2o/p~[(E(t/T s - co)/ 
c o + 2/3y(pm/p~)2]) result in the fact that the subcritical bubbles (R 0 < R,) are dissolved 
while the postcritical (R 0 > R,) grow. Diminution of the effective supersaturation results 
in an increase in the critical radius, hence the smallest of the already available bubbles be- 
come subcritical and start to be dissolved. In this stage the dissolution of the fine bubbles 
begins to play a governing role in the growth process of the large-scale postcritical bubbles. 

The self-similar solution found in [4, 5] at the times t > T~ leads to the following 
results: 

the gas content diminishes 

( t i r e )  = c o - 2%/3? (pm/p=) ~ + [e, (0) - -  e 0 + 2%/3? (pm/p=) ~] ( t / r . ) - l / " ;  

s i n c e  t h e  c r i t i c a l  r a d i u s  i s  d e t e r m i n e d  by  t h e  mean e f f e c t i v e  s u p e r s a t u r a t i o n ,  a p o w e r -  
l aw g r o w t h  o c c u r s  

t ~1/8. 

the number of bubbles diminishes because the postcritical bubbles grow mainly because 
of the subcritical 

n (t) = y dRog (Ro, t) ~'~ 0,4• (T j t ) ;  

the mean bubble radius agrees with the critical value 

N (t) = y dRog (Ro, t) R o _~ R ,  (t); 

this occurs to a considerable degree because of the narrowness of the distribution function 
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i (R,(O)/30,9• ' u = R o / R , ( t )  ' g (R o, t) = ~ ~n,  (t)] 

3ae u 2 exp [-- i / ( i  - -  2u/3)1 u < 3/2; P ( u )  = 0, u > 3/2 
P (u) = 25/8 (u + 3) ~/3 (3/2 - -  u) 11/3 ' 

( t h e  e x p l i c i t  f o r m  o f  t h e  d e p e n d e n c e  P ( u )  i s  p r e s e n t e d  i n  F i g .  1 [ 5 ] ,  h e r e  K = 4 ~ R , 3 ( 0 ) / B Q  i s  

t h e  e f f e c t i v e  i n i t i a l  s u p e r s a t u r a t i o n ,  and  Q = ( 4 ~ / 3 ) p g f d R  o • g ( R o ,  0 ) R o  3 + E ( 0 )  - C O + 

(2c 0/3~ ) (pm/p~) 2. 

The characteristic time of build-up of the self-similar distribution is 

,, (,o/,1} -,. ( . )  
( Pu[ % -~-\72"~/ l 

We shall estimate this quantity: for the initial equilibrium gas content ~(0) = c o and the 
pressure amplitude (pm/p~) 2 = 0.2, 2o/p~ = 10 -6 m, D = 10 -9 m2/sec, ca/0g = 10 -2 we have T a = 
I00 sec. Therefore, a universal bubble distribution can build up during-several minutes in 
the sonicated medium, and become all the narrower near the mean critical radius whose location 
shifts towards the domain of large dimensions, the number of bubbles here decreases with time. 

The solution represented describes the concluding stage in the evolution of a system of 
bubbles. As regards the initial stage, due to the limited amount of dataabout the distribu- 
tion of cavitation nuclei and the mechanisms of their stabilization [6], we assume the most 
equally likely model, from our viewpoint, for microbubble stabilization in cracks of suspended 
solid particles. Coalescence holds here for bubbles with R 0 ~ 5.10 -4 m if the (volume) con- 
centration of the solid particles, the effective nuclei for this field magnitude, is N > 
2.106 m -3. Indeed, by lowering the dissolved gas concentration by 10%, bubbles of the radius 
R 0 = 5-10 -~ m "lay waste" to a domain of volume V = 5.10 -7 m a so that VN > I. 

In conclusion, we note that coalescence of gas bubbles was observed experimentally in 
supersaturated gelatin [7] in a study of the cavitation nuclei by optical and electron micros- 
copy methods. The data represented in [7] graphically illustrate the process of dissolution 
of the smaller and growth of the larger of the two bubbles that turn out to be in close 
proximity. 
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